Sorts of Engineering Disciplines

Does every mechanical contraption pique your curiosity, making you delve deeper into its internal working? Do you enjoy problem solving of every kind? Then engineering may be your ideal professional choice.

The sector has evolved to offer solutions to almost every imaginable human problem, spawning multiple specialized realms of technology, where you would make a big contribution. It’s our endeavor to introduce you to the range of engineering branches that you just may very well be part of in the future.

Engineering Defined

Engineering is finding creative, efficient, economical, safe and feasible solutions to any problem, within the type of processes, structures, technologies and products, by harnessing principles of nature, properties of materials and optimum use of resources. Simply put, it’s about solving problems of any type, by developing an appropriate technology for a similar. It is about devising solutions to make our day-to-day jobs easier and manageable. The abilities required to be an engineer are problem solving ability, spatial thinking, ability to visualize, a capacity to integrate basic ideas into building a bigger picture and the flexibility to apply what you have got learned. Analytical thinking is a very powerful skill.

The Golden Gate Bridge stands testimony to the audacity of engineering prowess and mathematical precision.

Engineering Disciplines

Engineering is the applying oriented facet of pure science. What scientists discover, engineers apply to search out maverick solutions to humanity’s problems. Here is a brief introduction to each one in all its major disciplines.

Mechanical Engineering

The mother of all engineering sciences, mechanical engineering is the oldest and broadest of all branches. It involves studying, designing, manufacturing and maintenance of each machine operational on Earth. From motorbikes, robotics to space vehicles, this branch contributes to the production of every piece of machinery. A mechanical engineer must master design skills, study material science, physics, structural analysis, hydraulics, mechatronics, computer-aided-engineering (CAE), instrumentation, solid mechanics, mathematics, in addition to any allied technology that’s a part of his project. The sector is the bedrock of all engineering disciplines majorly contributing to the establishing of automated assembly lines and production of heavy machinery.

Massachusetts Institute of Technology (MIT), University of Cambridge (UK), Stanford University, National University of Singapore (NUS), Imperial College London, University of California (Berkeley)

Civil Engineering

This field involves designing, building and maintaining structures of every kind. It may be a skyscraper, a bridge, tunnel, dam or even railway systems. This field involves a broad swath of specialized disciplines including site engineering, structural engineering, surveying, transportation, water resource and construction engineering. Subjects of study at the undergraduate and graduate levels include basic structural design, engineering mechanics, modeling and simulation, public transport systems, logistics systems, transit management and material science, to call a couple of. New fields like earthquake engineering have emerged to train engineers to build structures in high seismic activity areas.

Massachusetts Institute of Technology (MIT), University of Cambridge (UK), Stanford University, University of California (Berkeley), Imperial College London, Oxford University (UK), Tokyo University

Electrical Engineering

From tablet computers, smartphones to the 24×7 electricity supply powering homes worldwide, creations of electrical engineers are ubiquitous. This branch is devoted to studying electromagnetism in all its manifestations, including electricity, magnetism and silicon based digital electronics and much more. Besides building digital computers, a few of the prime subjects of study are power engineering, control systems, signal processing, RF engineering, telecommunications, robotics, microarchitecture (VLSI design), wireless communication and antenna design. With devices like Google Glass, electrical engineering is entering a brand new phase of mobile and wearable computing. With creations starting from the electric shaver, super fast personal computers to rovers now exploring Martian surface, this field is just just getting into strides.

Massachusetts Institute of Technology (MIT), Stanford University, ETH Zurich, University of Cambridge (UK), University of California (Berkeley), Oxford University (UK), Princeton University, Imperial College London

Aerospace Engineering

This field is devoted to development of airborne and space vehicles, including the development of airplanes, rockets, unmanned vehicles, rotocrafts (like helicopters), rockets, spaceships and some time sooner or later – personal aviation vehicles. It is a multidisciplinary area of study, drawing from such diverse subjects as material science, fluid mechanics, aeroelasticity, sustainable energy research, orbital mechanics, avionics, control engineering, propulsion technologies, electronics, dynamics and lots of more subjects. This field has not only given us airplanes that breach the sound speed barrier, but additionally the moon landing, Mars exploration and the International Space Station, besides creating the rockets that transport our satellites into space. This discipline will spearhead our foray into outer space and eventually extraterrestrial colonization. It is one of the vital challenging fields of study requiring analytical, mathematical, visual and spatial visualization skills, besides a very good knowledge of physics (particularly dynamics) and electronics.

Rutgers University, Missouri University of Science and Technology, Massachusetts Institute of Technology, Purdue University, Delft University of Technology (Netherlands), University of Michigan, University of Southern California, University of Maryland, Stanford University, Virginia Tech

Biological Engineering

The naturally evolved biological systems that abound nature dwarf all our technological achievements. The sector of biological engineering is the meeting place of hitherto disconnected fields of technology and biology, making a novel synthesis. Simply put, biological engineering is all about applying knowledge gained from biological systems (from genetics, toxicology, molecular biology and much more) to resolve real world problems. It could be referred to, as a study of organic life envisioned as biomolecular machines and the creation of effective mechanisms to remedy their failings. Some of crucial subjects of study are genomics, computational biology and bioinformatics, biochemistry, tissue engineering, glycomics, bioimaging, proteomics, biological transport phenomena, biomolecular engineering, biomechanics, biophysics and carcinogenesis. Design of medical machinery and various types of implants, as well as the event of effective drug action mechanisms, is without doubt one of the prime subjects of research. Bioengineering and biotechnology are the longer term.

Johns Hopkins University, Georgia Institute of Technology, University of California (San Diego), Duke University (Pratt), Rice University

Chemical Engineering

This field of engineering is devoted to the synthesis of materials and chemicals for general and industrial use. From the synthesis of polymers, paper, drugs, petroleum refining to waste management and nanotechnology, this field covers a whole gamut of industrial operations. Among the prime areas of study are basic organic and inorganic chemistry, chemical thermodynamics, polymer synthesis, fluid mechanics, biotechnology, separation processes, thermal hydraulics, transport processes, process design and chemical reaction engineering.

University of California (Berkeley), Massachusetts Institute of Technology, University of Cambridge (UK), ETH Zurich, Oxford University (UK), National University of Singapore (NUS)

Computer Science and Engineering

In a nutshell, this domain of engineering is all about the development of computing hardware and software that runs on it. The sphere overlaps with electrical engineering so far as development of chips, memory, graphic cards, networking components and other associated devices is concerned. The subjects of study are diverse, ranging from microelectronic devices, electromagnetism, digital electronics, networking to the event of algorithms, simulation, programming languages and artificial intelligence. The entire field of knowledge technology, that has truly globalized the world today, has its roots in the sphere of computer engineering. Artificial intelligence or the creation of intelligent machines remains the ultimate quest for engineers and scientists working in this domain.

Stanford University, Massachusetts Institute of Technology, Carnegie Mellon University, Harvard University, University of California (Berkeley), Cornell University, University of Cambridge (UK), University of Oxford (UK), University of Tokyo

Environmental Engineering

Primarily a sub-field of civil engineering, environmental engineering is large enough as a field to be considered separately. As human technological revolution takes its toll on the environment, there is an ever-increasing demand for solutions to counter air, water and land pollution, through innovative engineering ideas. Solid waste management, water resource management, improvement of water and air quality, reducing the environmental impact of technology, creating sustainable eco-friendly technologies are a number of the prime research topics on this area.

Harvard University, University of Cambridge, University of California (Berkeley), California Institute of Technology, Imperial College London

Material Science & Engineering

A multidisciplinary field, it deals with all pursuits of the fabric world in the literal sense. It is concerned with the properties and synthesis of all sorts of materials, starting from organic tissues, polymers to magnets, with applications in industry, medicine, space, biology and far more. Subject matters of study range from thermodynamics, electronic and mechanical properties of materials, physical metallurgy, material processing, polymer engineering, optical, electrical and magnetic properties of materials to photonic materials and devices. The creation of smart materials like piezoelectric crystals (that produce voltage when squeezed) and quantum tunneling composites (which switch from being insulators to conductors when squeezed) are just a number of the prime research achievements in this field of engineering.

Massachusetts Institute of Technology, Northwestern University (McCormick), University of Illinois (Urbana-Champaign), University of California (Santa Barbara), Stanford University

Nanotechnology

A branch of fabric engineering that became a separate discipline because of the inherent scope of its applications, nanotechnology is all about engineering things on the molecular scale (which is the nanometer (10-9 m) realm, hence the name). A number of the prime subjects of study are properties and synthesis of nanomaterials and nanoparticles, nanobiotechnology, nanoelectronics. Applications and goals include the building of self-assembling molecules, molecular electronics, creating zeolite catalysts, building highly efficient solar cells, creating nanosensors, developing efficient medical diagnostic methods and much more. The sector is still in a nascent stage, in need of bright minds to assist unleash its potential.

Cornell University, Stanford University, Penn State University, Georgia Institute of Technology, University of Texas (Austin), Arizona State University

Nuclear Engineering

All of nuclear engineering is centered around harnessing the inherent power granted by the phenomena of nuclear fission, fusion and radioactivity, as well because the spin-offs provided by particle physics. The event, maintenance and safety of nuclear power plants, production of nuclear weapons systems, development of medical applications using radionuclides (non-invasive imagine for example), creation of effective nuclear waste disposal systems are some of the primary subjects of study. For a few years, controlled nuclear fusion (energy production through fusion of hydrogen nuclei) has been the holy grail of nuclear physicists. Spots are open for brilliant minds who can bring it to realization at some point, solving mankind’s energy problems, once and forever.

University of Michigan (Ann Arbor), University of Wisconsin (Madison), Massachusetts Institute of Technology, Texas A&M University (College Station), Georgia Institute of Technology

Marine Engineering

One of the oldest of branches, marine engineering deals with the development and maintenance of all sorts of watercrafts, offshore facilities like oil rigs and naval architecture. The designing of well-equipped marine vessels, including cruisers, submarines, aircraft carriers, fishing ships and offshore oil extraction facilities, from ground up, forms the first subject of study for a marine engineer. It draws heavily from mechanical and electrical engineering. A branch allied with marine engineering, is ocean engineering, primarily dealing with oceanic exploration, creation of eco-friendly marine technologies, pollution control, hydrodynamics and even forecasting.

Best Schools

United States Navel Academy (Annapolis, Maryland), University of Michigan (Ann Arbor), Virginia Polytechnic institute and State University, United States Coast Guard Academy, University of new Orleans, Massachusetts Maritime Academy

Like science, engineering has no defined boundaries. Compartmentalization only serves the aim of creating things easier to grasp. The central theme unifying all these branches is their concentrate on harnessing the known natural laws to resolve humanity’s existential problems.

Leave a Reply

Your email address will not be published. Required fields are marked *